01News

Neu im Portfolio: Elastomergebundene Magnete

Erweitertes Anwendungsspektrum und flexiblere Einsatzmöglichkeiten durch hohe Elastizität des elastomergebundenen Magnetmaterials.

Ob in Motorgetrieben und Nockenwellen in der Automobil- und Zulieferbranche, als Drehgeber in der Haustechnik und im Maschinenbau, in Polrädern und Kugellagern oder Pneumatik- und Hydraulikzylindern: Magnete übernehmen in zahlreichen industriellen Anwendungen wichtige Aufgaben. Sie helfen unter anderem dabei, Positionen, Geschwindigkeiten, Drehzahlen, Winkel und Lagen zu erkennen und zu erfassen. Oft kommen dafür kunststoffgebundene Magnete zum Einsatz, bei denen Magnetpulver in ein thermoplastisches Grundmaterial

wie Polyamid (PA) oder Polyphenylensulfid (PPS) eingebracht wird. Dieses Compound wird anschließend direkt auf den in der Regel metallischen Träger aufgespritzt.

Dabei kann es jedoch in einigen Fällen zu Problemen kommen, – denn der bei hohen Temperaturen aufgebrachte Kunststoff zieht sich beim Erkalten zusammen, und das führt zu einem Materialschwund. Dies ist wiederum die Ursache für innere Spannungen im Magneten und bedeutet, dass dieser nicht optimal am Träger haftet. Auch unterschiedliche Ausdehnungskoeffizienten von Magnet- und Trägermaterial können die Verbindung und damit die Funktion der Baugruppe beeinträchtigen, insbesondere in Anwendungen mit großen Temperaturschwankungen. Ein zusätzliches Verkleben des Magneten ist zwar eine naheliegende Lösung, bedeutet allerdings auch einen Mehraufwand und führt nicht immer zu einem optimalen Ergebnis.

Hohe Elastizität und chemische Verbindung

Eine deutlich bessere Alternative sind in diesen Fällen elastomergebundene Magnete. Auch hier sorgt ein Magnetpulver für die gewünschte magnetische Wirkung. Dieses wird jedoch nicht in einen thermoplastischen Kunststoff, sondern in ein synthetisches Elastomer wie etwa hydrierten oder nicht hydrierten Acrylnitril-Butadien-Kautschuk (HNBR, NBR) eingebracht. Diese Materialien sind gegenüber thermoplastischem Kunststoff deutlich elastischer. Außerdem geht das Elastomer beim Aufbringen auf das Trägermaterial mit diesem eine chemische Verbindung ein. Das ermöglicht einen besonders zuverlässigen und festen Halt ohne innere Spannungen im Magneten. Auch weisen Elastomere eine hohe Schlagzähigkeit auf und sind äußerst beständig gegenüber einer Vielzahl von Medien, etwa Schmierstoffen und Chemikalien. Die Temperaturbeständigkeit liegt je nach Material bei bis zu 180 Grad Celsius.

Verschiedene Magnetisierungsarten möglich

Ein weiterer Vorteil elastomergebundener Magnete ist die hohe Homogenität des Grundmaterials. Dies erlaubt eine besonders genaue Magnetisierung – ideal für Anwendungen, in denen es auf Präzision ankommt. Anisotrope Magnete sind mit einer typischen Remanenz von 230 Millitesla herstellbar. Die Magnetisierung erfolgt in der Regel vielpolig am Umfang oder sektorenförmig, weitere Magnetisierungsarten sind jedoch bei Bedarf ebenfalls möglich. Die minimale Polbreite liegt bei etwa einem Millimeter.

Neue Materialien für mehr Einsatzmöglichkeiten

Durch den Einsatz elastomergebundener Magnete kann MS-Schramberg das Anwendungsspektrum seiner Produkte deutlich erweitern. Sie eignen sich zum Beispiel, wenn Thermoplast-Magnete aufgrund des Schwunds nicht direkt in Hülsen gespritzt werden können oder wenn Ringmagnete aufgrund von Rissbildung nicht direkt auf das Trägermaterial aufgespritzt, sondern verklebt werden müssen. Auch wenn eine hohe Genauigkeit der Polteilung gefordert ist oder sich die Ausdehnungskoeffizienten von Trägermaterial und Magnet stark unterscheiden, sind Elastomere eine funktionale Lösung. In manchen Fällen können durch ihren Einsatz auch andere Trägermaterialien gewählt werden, die das Bauteil in der Herstellung günstiger machen. Damit bieten elastomergebundene Magnete in einer Vielzahl von Szenarien ein erhebliches Optimierungspotenzial.

 

Alle Vorteile auf einen Blick            Für Fragen zum Thema